NOTATION

T, A, U, B, Q, matrices and vectors of the appropriate dimensions; [ ]-!, sign of matrix inversion
[ ‘]t, sign of matrix transposition; A, thermal conductivity; c, heat capacity; p, specific density; ¢, ratio of
semiaxes of ellipse; N, number of measurements per section; A, length of approximation section; o2, disper-
sion of noise.
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SOME ANALYTICAL METHODS OF SOLVING INVERSE
(COEFFICIENT) PROBLEMS OF HEAT-CONDUCTION THEORY

A. A. Aleksashenko UDC 536.24.02

Some analytical methods are presented for the determination of thermophysical parameters
without linearization of the heat-conduction equation. A qualitative study of the temperature
fields is used. :

1. Themathematical descriptionof intense heat-transfer processes is connected with the necessity of
allowing for the temperature dependence of the thermophysical parameters. For this, in the one-dimensional
case, the nonlinear heat conduction is written as

ey S--2- [am 3]+ AL R, D, &
ot 0x 0x x ax

We note that until recently insufficient attention has been paid to the mathematical side of the determina-
tion of thermophysicai parameters, especially to questions of the accuracy and of the errors which are intro-
duced. The complexity of the determination of thermophysical parameters has been aggravated by the absence
of exact analytical solutions for (1). It is just these reasons (during the time which preceded the extensive use
of electronic and analog computers and the consideration of questions of the correctness of the solutions of in-
verse problems) which forced investigators to use various approximate solutions (most often linearized ones).
In this case nonlinear parameters were replaced by piecewise-linear parameters and so forth. The errors
introduced in the process do not yield to analysis in general form, which prevents one from giving a reliable
estimate of the accuracy of the parameters obtained, especially when they are strongly nonlinear. As an illus-
tration we cite the following two examples. As is known, one of the methods of determining parameters often
applied in engineering practice is the method of the regular regime of type I [1-2]. Inthis case one is confined
to one (or several) terms of the series in the calculating equations for the linearized solutions of (1). The
error introduced in the process (the remainder of the series) has usually been taken as the error in the deter-
_mination of the parameter. In fact, there are two kinds of errors: those for direct and inverse problems {3],
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with the latter being some function of the former, A study showed that in any temperature range under con-
sideration there is always an interval where the error in the determination of the coefficient of thermal diffu-
sivity varies from 0 to 100% (in [3] such an interval was equated to almost two thirds of the temperature range
under consideration). The ignoring of this situation has led, in our view, to considerable understating of the
errors in the determination of parameters at the traditional 1-5%. The second example is connected with the
erroneous concept which has become implanted in the literature concerning the use of calculating equations
based on the integral mean values of the temperatures instead of the local values. This is fundamentally wrong,
since the piecewise constant parameter obtained in the process ultimately gives a dependence on the integral

- mean temperature rather than the local values (the parameters enter into the heat-conduction equation as func~
tions of the local values).

Methods based on the various published solutions of (1) are notbuniversal, as a rule: Theyare only suit-
able for weakly nonlinear parameters, close to linear (see the review in [4], fgr example).

Methods applicable for any form of nonlinear dependence of the parameters on the temperature are pro-
posed in the present report.

2. Henceforth we assume that the experimentally obtained temperature fields are already statistically
analyzed. '

At the basis of the methods proposed below lies the qualitative study of temperature fields [5]: of a steady
field for an unbounded plate and of a nonsteady self-similar field for a semibounded body. Thus, in the case of
a steady temperature field obtained with boundary conditions of the first kind for an unbounded plate the follow-
ing is valid: If the temperature field has inflection points, thentheir ordinates are simultaneously extremal
points of the unknown coefficient of thermal conductivity, dividing the range of variation of the temperature into
intervals of monotonicity; if the temperature field is represented by a convex (concave) curve then the unknown
parameter is accordingly an increasing (decreasing) function of the temperature. For a self-similar regime
the presence of one inflection point on the graph of the temperature field indicates an increase (decrease) in the
unknown parameter in accordance with the decrease (increase) in the temperature field [5]. The presence of
two inflection points indicates an extremum of the unknown parameter whose abscissa lies between the ordinates
of the inflection points [5], etc.

We note that when a self-similar solution ¢ =6(¢) is used in an experiment it is sufficient to have values
of the temperature field measured at only one point x; at different times 7;: T(xy, Tj), which then take the form
6 = 6(¢) with the help of a change of variables. The presence of experimental values of the temperature field
at only one or two points (in the steady case) also allows one to draw certain conclusions concerning the in-
crease (decrease) of the physical parameter and the presence of extrema [5-6].

3. Nonsteady Self-Similar Solutions. ILet us consider self-similar solutions of (1) for a semibounded
body (I' = 0), assuming that the source function F(x, 7, T) can be written in self-similar form, such as

aT
Fx, v, T)=o@(T) — .
(xr)<P()aT »(2)
We note that Eq. (2) analytically describes various phase transitions in. particular (crystallization, evapora-
tion, etc.).
The boundary conditions are written in the form

0T (o0, T) _

TO, V=T, T(x, 0)=T, p 0. 3)
. X
With the allowance for the relations
T—T, A(T) (M) y(M)—9 (M)
8 == ¢ ’ = A(O)’ = (D(e)’ (4
T—T, Ay CoYo )
E=(day) "%, ap= Ao vo' ®)
we rewrite the boundary problem (1)-(3) as
— 0" [2EOO)+ A () 0] =A(0) 0", 6)
8(0)=1, 6(c0)=0, 0 (c0)=0. - M
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TABLE 1. Results of Calculations by Eqs. (9)-(11)

|

4 | o —a0; | -0 | Apcen | A op | ol %] AP | &2,
8 125 (13950 0,100 | 0,400 i : ? 8 .

, , , . L0 | 4,840 | 13,850 | 4,540

0,252 0,900 4,620
0,37 0,825 | 0,150 | 0,600 | 2,940 | 2,970 1,010 | 2,920

0,500 ;| 0,750 0.685
0,625 | 0,675 | 0,180 | 0,720 ' 2,180 | 2,285 4,600 | 2,190 0,456
0,750 | 0,570
(;,875 g.ggg 0,190 [ 0,760 | 1,605 | 1,685 4,750 | 1,163 1,530
1,125 | 0,300 | 0,170 | 0,680 | 1,315 | 1,342 2,100 | 1,316 0,076
1,250 | 0,210

1,375 | 0,150 { 0,110 | 0,440 | 1,135 | 1,180 3,810 | 1,145 0,690
1,500 | 0,100

1.675 | 0,075 | 0,060 | 0,240 | 1,065 | 1,175 9,370 | 1,166 6,060
1,750 | 0,040

:12,875 g,ggs 0,020 | 0,096 | 1,020 | 1,120 8,900 | 1,100 7,270
‘ ,020 :
2,125 | 0,018 ! 0,010 | 0,040 | !,010 | 1,117 ' 14,000 | 1,130 | 10,600
2,250 | 0,010
2.375 | 0,005 | 0,010 ' 0,040 | 1,005
2,500 | 0 g

I. The Method of Direct Integration. By integrating (6) relative to the unknown parameter we obtain

8
AO= 5 [ACIT )2 0@)E0))] ®)

o' (&) J,
0<o, <)
The integral in (8) is calculated approximately. We assume that ¢(T), c(T), and y(T) are known. It is shown

in [7] that the coefficients of thermal conductivity and heat capacity cannot be found simultaneously as indepen-
dent functions.

Example. Using Fudzit's data [8], from Eq. (8) we find the coefficient of thermal conductivity (¢ = 0,
&) = 1), which has the form

A®) = (1—0.80)71. 9)

The integral in (8) is calculated by Simpson's rule (§x = 0) with n =2

— 0.
AL (6) = ————[E(8,) + 4E(0.58;) + 2.5 10
) WE) [E(6,) + 4E( )+ 2.9] (10)
andn =4
AV ®) = ™ (:f) 8(6:) + 45(0.756,) + 2£(0.56,)+4(0,256,) + 2.5], (11)
£ \oi

where £(0) = 2.5. A comparison with the exact equation (9) showed (see Table 1) that the greatest relative
error does not exceed 14 and 10.6%, respectively, in calculations by Eqs. (10) and (11); in the range of 0.15<
6 < 0.825 the error did not exceed 4.75 and 2.92%, respectively. The accuracy of the calculation can be in-
creased if one takes a larger number of points of division of the interval of integration.

II. The Method of Inflection Points. After the establishment of the intervals of monotonicity of the un-
known parameter (by the method of qualitative analysis [5-6] or by other means) the experimental conditions
are chosen so that the graph 6(¢) of the temperature field has an inflection point. This can occur in the two

cases

A©)>0, 0E<0; A(0)<0, 6FE>0 (12)

(in the latter case instead of (7) we will have 0(0) =0, 6(») =1, and 6'(») = 0). At the inflection point, in ac-
cordance with [5-6], we obtain the relation

N OG- fé:; , as)

1486



which gives the tangent of the slope angle of the unknown parameter. It can be used to approximate the un~
known parameter by linear

Ay (0) = AL (0) + [A(1) — A, (0)1 0 (14)
or quadratic
Ap(0)= K0+ L8+ P (15)
functions (or some other kind), where
P Ay(O) L=Ay()—A,0)—K K= A*(‘)j“_*(gggji[e@oﬂ : (16)
0k~ —- -

Example. Let us find A(9} determined in accordance with Eq.- (9). Substituting the values of §(1) = 0.38,
6'(1) =—0.78, and §, =1 found from the graph into (13), (15), and (16), we obtain Ax{f) = 5.090% — 1.096 +1. A
comparison with (9) at the points 0.25, 0.5, and 0.75 gives relative errors of 19, 5.6, and 17.8%, respectively.

TI. The Method of "Model" Solutions. As "model" solutions we understand those solutions of (1) which
are easily determined and allow one to give upper and lower estimates both for the unknown temperature fields
{direct problem) and for the thermophysical parameters (inverse problem). The idea of the method consists
in obtaining the inequalities

B (B) << 0 (B)<< Onas (B), an
Anr (Bar1) KA (B) < Amz Om2); Ami (Ba01) = A (0) = Amz Bue), (18)

which permit one to give estimates simultaneously when the unknown functions are replaced by approximate
functions. Let us present the scheme of application of the method (for want of space), We will show in which

cases the inequalities (17) and (18) occur. In the case of self-similar solutions let there be "model" solutions
of the equation in the form

Dar; Oui; Omiy =60 (=12 (19
satisfying the boundary conditions (7). From (6) we subtract the expression (19) (#(8) = 1)* withi = 2:

% N(®Y
A®) A0

AY" = (6 — Oppp)' = — O’ [ ] — @z (Bua; Ouss E). (20)

It is required to show that A9 < 0, i.e., § < 0pp. Let us assume the ogposite, that A_Q >0,1i.e., Q> O ppe-
Then, with allowance for the boundary conditions, we find the point ¢ =% af which Af'(¢) =0 and 8"(¢) = 0 (.e.,
Af has a maximum at the point ¢ = £). If we show that A8" > 0 then by this we also show the absence of a maxi~
mum and the validity of 6=0p1,. And the lower estimate 6)y; < ¢ is obtained analogously. Inthe course of the
proof the conditions under which the inequalities (18) are valid are determined. In obtaining the "model" solu~-
tions several forms of the functions ¢35 were considered:

@ar = — Oaa; (8) [285; - A’ (O1) A7 (Bats) Ol 21)
Qmr = — Oz (8) [28 + A (On0) O, @22)
Pmi = — Ot E) 128 — A" (Om) A7 (Oani) e;vfi]- (23)

Thus, the "model" solutions for (21) with the conditions 6(0) = 0, 6(<) =1, 8'(») =0, and (7) are written

Bm:
( jM A (6)d8) (f A0)d0) ™" = erfe VB8, 010 >0,
i 1

LIvE

( [ A(6)d6> (f_/\(é)d@)*1 —erf VB & 6 <.

i i

* This condition is easily obtained by an elementary change of variables.
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Even simpler model solutions are obtained with

P = (B; — 28) 01, Oy = 7k () (24)
in the form
Op; — eric(( — 0.5 B,) 6 _2 tok.
M erfic(—0.58;) ' M= gt (25)

If one is unable to find "model" solutions for the experimental values of the field obtained (or rather, if those
ava.i_lable give a large error) then one must substitute a linear, parabolic, or some other approximating func-
tion of the unknown parameter into (21)-(23) in order to be sure of obtaining the required degree of accuracy

~ using the inequalities (17) and (18). Sometimes it is expedient to combine "model" solutions, taking solutions
with different ¢ for the upper and lower estimates.

Example. Let 6' > 0;i.e., the conditions cited above are valid. If the approximating function is taken
in the form (14) with A(0) = 0.25 and A (1) =1 then for the case (23) we obtain the solution in the form 6y, = 1/3
(=1 +V'1 +15 erf£). As the lower estimate we take the solutions (24) and (25). The maximum error reaches
28.3% at ¢ =0.

4. Steady Solutions. By analogy with Sec. 3, all the enumerated methods are also effective in the case
of steady solutions of (1), which we rewrite as

07 (X) = — 04 (X)X *A™1(0r) [FA(Br) + XA' (1) 0r] — A™1(8r) F (X, 6p), (26)
where
= Tr—Tar , X=-—, A®p= LT’),
Ty —Tor R A, @7
Fo=Lt . F - Ao(Tir—Tar)
F, R

The boundary conditions are

or

8r(0)=0, Or(c)=1, 6,>0, 8r=(Tr—Tir) (Tor—Tir)7" 29)

1. The Method of Direct Integration., In each interval of monotonicity of the coefficient of thermal con-
ductivity we have the calculating equation [by integrating (26)]

[¢]
ABp) =X"" [e'rl,{A (0,)-6" (X X% — [ F(8, X) X" dx} . (30)
6,

II. The Method of Inflection Points. From (26) (with Fy = 0) it follows that inflection points are possible
for .

A8 >0, 6,<0; A'(0)<<0, 67>0. (31)
The condition (31) is only necessary but not sufficient for the presence of inflection points. In the presence
of the inflection point [X; (X;)] we have the relation
TA18r (X)) + XoA' (8- (Xo)I-Br (Xg) = O,
analogous to (13). Approximating functions can also be sought in the form of (14)-(16).

. The Method of "Model" Solutions. We note that inequalities of the type of (17) and (18) are also
analyzed for steady solutions (only ¢ is replaced by X) and the proofs are carried out analogously. For example,
one can take the appropriate linear dependence of the parameter on the temperature as the "model" solutions:

1
A'(O).: A(O)[l + ]ﬁ;ﬁ 9] C 0= _ﬁ* [1—(x—1b)(Cﬁ—b)_1(l—ﬁ2)] 2 ’ B —A(0)A1(1).

1488



In the case of concavity of the graph of the unknown parameter

1 —n

A@) =AO{l-+[—1+p"10} ;
1— {5’7— (=) u- ﬁ”{i}}ﬁ
0= c-or SN
1—p "
in the case of convexity
l
A@®)=AO){l + [—1-+p"6}"
e
0= [—p
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CONSTRUCTION OF A REGULARIZED SOLUTION TO
ONE INVERSE HEAT-CONDUCTION PROBLEM WITH
RANDOM ERRORS IN THE INITIAL DATA

Yu. E. Voskoboinikov and Ya. Ya. Tomsons UDC 536.24.01

An analysis is made of the statistical criterion for the choice of a regulation parameter
in the reconstruction of the heat [lux at the surface of a body from the temperature inside
the body measured with a random error.

1. The determination of the heat flux at the surface of a body from the temperature field measured in-
side the body is a very common inverse boundary problem of heat conduction in the analysis of experimental
results [1].

Let us consider an infinite plate with a thickness d which is thermally insulated on one side. The tem-
perature field t(x, 7) at a depth x produced by a variable heat flux g(r) entering through the boundary x =d is
determined by the integral equation [2]

jz h(x, d; v, 1) g (ry)dr, = £ (%, T) )
0

where h(x, d; 7, 7,) is the Green function for a plate of finite thickness. In the case of a nonzero initial tem-
perature distribution t(¢, 0) the right side of (1) is written in the form [2]
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